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Abstract

Given the shortest Hamiltonian path (or tour) HO in an undirected '

weighted graph, the sensitivity analysis problem consists in finding by how

much we can perturb each edge weight individually without changing the

optimality of H°.

The maximum increment and decrement of the edge weight that preserve the

optimality of H0 is called edge tolerance with respect to the solution H0 . A

method of computing lower bounds of edge tolerances based on solving the

sensitivity analysis problem for appropriate relaxations of the shortest

Hamiltonian path (tour) problem is presented.
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1. Introduction

The problem considered in this paper belongs to so called sensitivity

analysis in combinatorial optimization (see e.g. [2]). This term is used for a

phase of solution procedure when an optimal solution of problem has been

already found and additional calculations are performed in order to

investigate, how this optimal solution depends on changes of problems

parameters. I --

.4,
- In this paper two well known (see e.g. (7]) combinatorial optimization

problems are considered: the shortest Hamiltonian path problem in undirected

weighted graph and the symmetric traveling salesman problem. It is assumed

that an optimal solution of given problem is known. The goal of sensitivity

analysis consists in finding by how much we can perturb each edge weight

individually without changing the optimality of the solution. The maximum

increment and decrement of the edge weight that preserve the optimality of

solution are called the edge tolerances with respect to this solution.

In this paper, a method of computing lower bounds of the edge tolerances

with respect to the optimal solution of the shortest Hamiltonian path problem

and traveling salesman problem is described. The method is based on solving

the sensitivity analysis problem for appropriate relaxation of the original

optimization problem., A general idea of this approach was presented in [8].

In this paper we give- a description of the approach and its microcomputer

implementation and we report preliminary results of computational experiments.

This paper is organized as follows. In section 2 we introduce a notation

and give some preliminary results concerning the relations between the

sensitivity analysis for the original problem and its relaxation. In section

3 we describe algorithms for performing a sensitivity analysis for problem

relaxations. A choice of appropriate relaxation of the original problem is
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discussed in sections 3 and 4. Section 4 contains also a description of

implementation of the method and results of numerical experiments.

2. Notation and preliminary results

Let G = (V,E,C) be an undirected weighted graph with a set of vertices

V = [1,...,n) and a set of edges E {el,...,em} C V X V. C c R nxn

where R K u (m}, is a matrix of edge weights. (If e = (i,j) 0 E, then

c(i,J) = i.) The subgraph (V,Q,C) of G will be identified with a set of its

edges Q and by 1(Q) : c(e) we will denote a weight of the subgraph.
ecQ

Let H be the set of Hamiltonian paths in G with fixed ends in vertices

1, n and let H denote the set of Hamiltonian tours in G. Two well known

combinatorial problems: the shortest Hamiltonian path problem (SHPP) and the

traveling salesman problem (SHTP) are formulated as follows

min{l(H) : H 6 HI (SHPP)

min{l(H) : H * H} (SHTP)

min{l(R) : q-1 6 9(SHTP)

In this paper the shortest Hamiltonian path problem will be mainly

considered. The approach for the traveling salesman problem is similar; the

differences are pointed out if necessary.

Assume that HO is a (known) optimal solution of the SHPP in the graph G,

i.e.,

H0 =arg min{l(H) : H H}

The tolerance problem is formulated as follows:
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Given HO, find for e a E values c+(e), c-(e), such that H0 is optimal

for any perturbed graph G' : (V,E,C'), in which c'(i,j) : c(i,j) if

(i,J) i e and c(e) - c-(e) < c'(e) < c(e) + C+(e).

The values c+(e), c-(e) are called upper and lower tolerances of the edge e with

respect to the optimal solution H0 . Edge tolerances with respect to optima1

solution of the SHTP are defined in the same way.

Let

H: {H H: e s HIe

and

He  (H H e 0 HI

The following proposition expresses the edge tolerances c+(e), c-(e), e a E,

by auxiliary optimization problems over sets He, He. (We will assume that if

a minimization problem is infeasible, then its optimal value is equal to )

Proposition 1. If e s H0, then c (e) and

-+ (e) = min{l(H) H He) - l(H0 ). (1)

If e 0 H0 , then c+ (e) : and

c-(e) = min{l(H) H a } - 1(H°). (2)

e,



0Proof. Consider an edge e c H° . It is obvious that any decrement of the

weight c(e) does not change the optimality of H° , so c-(e) = -. If the

weight of e increases and the weights of all other edges remain unchanged,

then weights of all Hamiltonian paths belonging to He also increase in the

same way, but weights of paths in He are still the same. Therefore H°

remains optimal as long as the increase of the weight of e is not greater than

the difference between the weight of the shortest Hamiltonian path in He and

the value l(H°). The proof of the second part of Proposition 1 is analogous.

0

Similar fact may be proved for edge tolerances in the SHTP.
Proposition I suggests that a calculation of edge tolerances may be a

difficult task, because in order to find the tolerances for a particular edge,

one has to know the optimal value of an auxiliary optimization problem, which

is in general as difficult as the original SHPP (unless this value is a by-

product of solving the original problem). Another explanation of difficulty

of this sensitivity analysis arises from the observation that the tolerance

problem is closely connected to a problem of finding adjacent vertices in the

SHPP or the SHTP polytope, which is known to be NP-hard [7].

The goal of this paper is to propose an approach which allows to compute

in an efficient way lower bounds of edge tolerances, i.e., values d+(e),

d-(e), e r E, satisfying the conditions d+(e) < c+(e), d-(e) < c-(e),

e . E. Such lower bounds are also of practical value, because they imply

that for particular edge e, the solution HO remains still optimal if the

weight of e belongs to an interval [c(e) - d-(e), c(e) + d+(e)]. Calculation

of lower bounds seems to be much easier than calculation of edge tolerances,

because in order to find c+(e), c-(e) one must, in fact, exploit necessary and

;-



sufficient conditions of the optimality of HO. To calculate d+(e), d-(e) it

is enough to have only some sufficient optimality conditions for H0 . The

notion of necessary and sufficient optimality conditions in seldom the case in

combinatorial optimization, whereas sufficient optimality conditions are

provided by different relaxations of the original problem and related dual

problems. The choice of appropriate relaxation is discussed in sections 4 and

5. In this paper as a relaxation of the SHPP, the shortest spanning tree

problem (SSTP) is chosen, and to calculate bounds of edge tolerances for the

SHTP, the shortest 1-tree problem (SITP) is used (see e.g. [7]).

Let us consider a pair of problems - the SHPP and the SSTP - and let

v(SHPP), v(SSTP) denote its optimal values, i.e.,

v(SHPP) = min{l(H) : H s H),

v(SSTP) = min{l(T) : T 6 TI,

where T is a set of spanning trees in G. Usually, the SSTP is not a good

relaxation of the SHPP (if we measure a quality of relaxation by the

difference between the optimal values of both problems). But it is well known

that this difference may be significantly reduced (see e.g. [7], Chapter 10)

by appropriate modification of edge weights. This modification consists in

replacement of the original edge weights c(i,j), (i,j) E, by values

cP(i,j) defined as follows:

cP(i,j) = c(i,j) + p(i) + p(j) (3)
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where p(i), p(j), i,j r V, are elements of so called penalty vector
.T n.

p (p(1),. .,p(n)) T R Denote by Cp modified edge weight matrix and let

GP = (V,E,CP). The weight of subgraph Q in GP will be denoted by IP(Q). It

is well known that the such modification of the graph does not change the set

of optimal solutions of the SHPP. The following proposition states that this

is also true for edge tolerances. The same facts hold also for the SHTP.

Proposition 2. Edge tolerances c+(e), c-(e), e 6 E, are the same for any

modified graph GP = (V,E,CP), p 6 Rn.

Proof. This is a simple consequence of Proposition 1. It is easy to see that

for p 6 Rn the value d(H',H") : IP(H') - lP(H") does not depend on p for any

H', H" r H. But according to (1) and (2), if c+(e), c-(e) <w then

c+(e) = d(He,HO), e * E, and c-(e) = d(He,H°), e Q E\H °  where

He : arg min (I(H) : H He,, H : arg min{l(H) : H H }. If for some
e e

e H , c +(e) : w or for e a E\H ° , c-(e) : ®, this means that corresponding

set He or He is empty; which, obviously does not depend on the vector p.

0
a.

Let p a Rn be arbitrary penalty vector and define A(p) to be equal to

the difference between the optimal values of the SHPP and the SSTP in GP .

Moreover, let TP be the optimal solution of the SSTP for GP and define '.

t (e,Tp ) (tp(e,TP)), e a E, be an upper (lower) tolerance of e with respect
p p

to TP regarded as an optimal solution of the SSTP in GP , i.e.,

t (e,Tp ) (tp(e,TP)) is equal to the maximum increment (decrement) of the
p p

weight of e, which does not change the optimality of Tp . Then the following

fact hold: 'p.
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Lemmal1: For p QR nand e6H nT~u (E\H0 )n (E\TP)

c4(e) t+(e,TP) -A(p)()

p

and

-(e) 2! t-'e,TP) - (p)()

c ~ pk

Proof. We will prove only (4); the proof of (5) is analogous. If e E\

then c+(e) = - and (4) holds. Assume then that e 6 H riTP and let

t e = min(lP(T) : T sTel (6)
p

where Te . {T rE T: e 0 T}. Using the same arguments as in the proof of

Proposition 1 it is easy to show that

t4(e,TP) . e _ 1P(TP) (7)
p p

From Propositions I and 2

c +(e) = le _ lp(,o) (8)

p

The problem (6) is a relaxation of the problem (9,which implies that

1 e > te and now from (7) and (8) we have
p p
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c+(e) t' (e,Tp ) + lP(T p ) - IP(H ° ) = t+(e,T p ) - A(p) 0
p p

An analogue of Lemma 1 may be also proved for the SHTP and the S1TP as its

relaxation.

Some comments concerning Lemma 1 are necessary. Two special cases have

to be considered:

CASE 10 - when there exists a penalty vector p* u Rn such that

A(p*) = 0;

CASE 20 - when there is so called duality gap 6 > 0, where

inf{A(p) : p R n.

In the Case 10, H0  arg min(lP*(T) : T T} and from Lemma 1 we have

the following inequalities for e E:

c+(e) > t+ (e,H°) (10)

pV

c-(e) tp-(e,H (11)

In section 3 we will show that bounds for c (e), c-(e) provided by the

inequalities (10), (11) may be slightly improved, because in the Case 10

stronger inequalities hold:

c+(e) a t 0(e,H
° ) + minft+*(u,H°): u H0 \(e}} (12)

c-(e) t1 (e,H° ) + min{t-* (u,H°): u E\H°\(e}} (13)
p p
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In order to use inequalities (10), (11) or (12) (13) to calculate lower bounds

for the edge tolerances c+(e), c-(e), e s E, in the Case 10 two problems

have to be solved:

(i) a penalty vector p* . Rn satisfying A(p*) = 0 must be found;

(ii) edge tolerances t+p(e,H°), t .(eH 0 ), e w E, for tue SSTP in GP*
p p

have to be calculated.

A solution of problem (ii) is described in section 3. A method of solving the

problem (i) is discussed in section 4.

In the Case 20 bounds for c+(e), o-(e) obtained from Lemma I are weaker,

because A(p) > 0 for any p r Rn. Moreover, Lemma 1 does not provide

bounds for edges belonging to (H°\T p ) u (TP\H°). In section 3 we will prove

a theorem which specifies bounds for c+(e), c-(e) in this case, but they still

may be weak. Thus, to calculate bounds for edge tolerances in the Case 20 it

is required to find a penalty vector p, for which A(p) is possibly small and

the cardinality of the set H°\TP is small as well. This problem is discussed

in section 4.

3. Edge tolerances for shortest spanning tree and 1-tree

The problem of calculating edge toleraoces of the shortest spanning tree

has been addressed in several papers (see e.g. [1, 3, 121). In this section

we review at first some fundamental facts on which sensitivity analysis for

the shortest spanning tree is based. Next we discuss in detail

implementations of algorithms for finding edge tolerance with respect to

special spanning tree which is also a Hamiltonian path. We close this section

by proving some useful result concerning relations between edge tolerances and

lengths of spanning trees.
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Let T be the shortest spanning tree in G = (V,E,C). The following

well known proposition (see e.g. [12]) formulates necessary and sufficient

optimality conditions for To:

Proposition 3. To is the shortest spanning tree in G if and only if for any

e 6 E\T
0

c(e) c(w) for w s U(e) (14)

where U(e) is a subset of edges belonging to the unique path in To joining the

ends of e. 0

Denote for e 6 T0

W(e) = (w s E\T 0 : e 6 U(w)} (15)

The following fact is a straightforward consequence of Proposition 3:

Proposition 4. If e s T0 , then t-(e) and

t+(e) = min{c(w) : w . W(e)} - c(e) (16)

0+
If e a E\T O , then t+(e) = m and

t-(e) = c(e) - max{c(u) : u 6 U(e)} (17)

0

Proposition 4 provides a method of computing edge tolerances with respect

to T0  by finding minimum weight edge belonging to W(e) for any e 6 T and

ii. At ~ 1-A K% *LA. W



0maximum weight edge in U(e) for any e 0 T This may be done simultaneously

by using an auxiliary graph ([11]) called trarsmuter. A transmuter is a

directed acyclic graph which contains, one vertex v(e') of in-degree zero for

any e' a T0 , one vertex v(e") of out-degree zero for any e" a E\T 0  and

arbitrary number of additional vertices. Moreover, in a transmuter there

exists a path from vertex v(e') to vertex v(e") if and only if e" C W(e'). I

It was shown in [101 that for given spanning tree T in G a transmuter

containing O(m a(m,n)) vertices can be constructed in O(m a(m,n)) time

(where c(m,n) is a functional inverse of Ackerman's function [10]). Given a

transmuter, a labeling procedure was described in [12] to compute all edge

tolerances in O(m a(m,n)) time using O(m) space. It is the best known

complexity of algorithm for finding all edge tolerances with respect to

general shortest spanning tree, although there is some doubt, whether

complicated data structures used may lead to a computationally efficient

procedure (see [10]).

In [31 simpler data structures were proposed to compute all edge

tolerances for (general) shortest spanning tree in O(m log n) time using O(m)

space.

In [9] two methods which may be used to compute edge tolerances were

described: the first has time and space complexity O(n2 ), the second has

running time 0(mn) and requires O(m) space.

Any of the methods mentioned above may be used to calculate edge

tolerances with respect to the shortest spanning tree in the Case 20 (see

section 2). But in the Case 10, To is a particular spanning tree which is

also a path and more efficient algorithms may be proposed.

Let T be the shortest spanning tree in G = (V,E,C). Assume that T O

is also a Hamiltonian path in G and, moreover, the vertices of G are numbered

in such a way, that To = [(1,2), (2,3),..., (n-l,n)}.
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Then sets U(e), W(e), e 6 E, appearing in Proposition 4 are defined as

follows:

For e sE\T 0 i.e., e = (k,l), k=1,. ..,n-2, l=k4.2,...,n,

For e 6T 0, i.e., e =(i,ia.), i1..n1

Figure 1 illustrates subsets of elements of edge weight matrix C for -hich

appropriate minima and maxima must be calculated according to formulae (16),

(17) and (18), (19).

1t2 1 nIt 2n

n-iI

n ~nj
nn

in 
ji+

Fig. 1
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If the graph G is dense, i.e. , m = e~n 2 , then the following simple

labeling algorithms may be used to calculate edge tolerances

t +(e),t-(e), e 6 E, in 0(n 2) time using 0(n 2) space. Let w(i,j) R

be labels defined for i = 0,1,.. .,n, j =l,...,n,n+l.

Algorithm for calculating t+ (e), e a T0

Step 1 (Initialization) for i=1 to n-1 do w(i,n+l):

for J:=2 to n do w(0,J):=-;

Step 2 (Labeling) for i:=1 to n-2 do

for J:=n downto i+2 do w(i,j):: mintw(i-1,J), c(i,j), w(i,j+l)};

Step 3 (Calculation of tolerances) for i: = 1 to n-i1 do

t +(ili+l):= min{w(i-l,i+l), w(i,i+2)} - c(i,i+l).

Algorithm for calculating t-(e), e a E\T 0

Step 1 (Initialization) for i:=1 to n-i do w(i,i+1):=c(i,i+1);

Step 2 (Labeling and calculation of tolerances)

for i:=2 to n-i do

for J:=1 to n-i do

bgnw(j,j+i):: minfw(J,J+i-1), w(J+i,J+i)1;

t-(J,J+i):=w(J,J+i)-c(J,J+i)

end

If the graph is sparse, then more efficient algorithms may be used to

calculate edge tolerances with respect to To.
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Consider at first the problem of calculating

max{c(u) : u s U(k,l)} (20)

where U(k,l) is given by (18). In order to solve (20) for all (k,l) e E\T 0

efficiently let us store elements of set U = (c(i,i+1), i=1,...,n-1} using a

data structure called a symmetric heap (see [6]). A symmetric heap SH(U) is a

directed binary tree containing one vertex for any element of the set U. The

vertex v(i), i=I,...,n-1, of SH(U) has a label c(i,i+1) and the following

properties are satisfied for any k,l:1,...,n-1, k 1 1:

If c(k,k+1) < c(1,1+1), then there is a path in SH(U) from the vertex

v(l) to the vertex v(k) and, moreover, if k < 1, then v(k) belongs to the left

subtree of v(l), otherwise v(k) belongs to the right subtree of v(l).

A symmetric heap SH(U) may be constructed in O(n) steps and, as it was

observed in [6], any particular problem (20) for given k,l is equivalent to

calculating the nearest common ancestor of vertices v(k), v(l-1) in SH(U).

But this problem may be solved in 0(l) time (see [4]) if a preprocessing

requiring O(n) time has been performed. This means, that all lower tolerances

t-(e), e 6 E\T0 , may be calculated in O(m) time and O(m) space.

To calculate all upper tolerances t (e), e r T , a simple algorithm

requiring a sorting of values c(e), e c E\T , may be constructed and this

problem may be solved in O(n log m) time and O(m) space. But it is not known,

whether there is of linear complexity (O(m) time and space) algorithm to

calculate upper tolerances of edges in the Case I° .

Edge tolerances with respect to the shortest 1-tree T can be computed

in a similar way. An approach is based on simple Proposition 5 which is an

analog of Proposition 4 and which we will state without proof. Let T be an
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optimal solution of the S1TP in G = (V,E,C), i.e., T = T u {(1,k), (I,1)},

where T is the shortest spanning tree in the graph G, = (V\t1, El, C)

obtained from G by removing the vertex 1, and (1,k), (1,1) are two shortest

edges incident to the vertex 1. By W1 (e), U1 (e) we denote subsets of edges of

GI defined for TI in the same way as the sets W(e), U(e) for TO.

Proposition 5: If e a T1 , then t-(e) : and

t+(e) = minfc(w): w s W1(e)} - c(e).

If e a E1\T,, then t+(e) = - and t-(e) : c(e) - max{c(u): u 6 U1 (e)}.

If e a E6 = E\EI\[(I,k) , (1,1)}, then t+(e)= and

t-(e) = c(e) - maxfc(1,k), c(l,1)}.

Furthermore, t-(1,k) = t-(1,1) and t+(1,k) : c(1,k) - min(c(e) : e E}

t+(1,l) = c(l,l) - min{c(e) : e a Ell.

0

We will close this section by proving a result which establishes a

relation between the edge tolerances with respect to the shortest spanning

tree and the value of difference between the weights of the shortest spanning

tree and an arbitrary spanning tree.

Theorem 1. Let To be the shortest spanning tree in G and T be an arbitrary

spanning tree in G. Then

1(T) - 1(TO) 0 max{ t (r), t-(q)} (21)

rT \T q6T\T
0

M~ ~ ~ V ~ W' ~ W
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Proof. Consider two subsets of edges: R = T \T and Q = T\T O. It is known

(see (51, Theorem 1), that there exists a bijection 4 from R into Q, such

0that for every edge r . R, Tr = T \[r} u {$(r)} is a spanning tree in G

and c($(r)) - c(r) 2 0. From the fact that Tr  is a spanning tree it

follows, that 0(r) 6 W(r) and from (16) we have the inequality

t+(r) 5 c(*(r)) - c(r) and further 1(T) - 1(TO ) = 7 [c(*(r)) -c(r)]
rER

t+(r). Similarily, for every edge q * Q, T {q}\{O- (q) is
rR -1

also a spanning tree and this implies that -(q) 6 U(q). Now from

(17) we have t-(q) 5 c(q) - c(1 (q)) and finally 1(T) - l(T )

X [c(q) - c(*- 1(q))] X t-(q).
qeQ q6Q

0

As corollaries of Theorem 1 we obtain some properties of edge tolerances

with respect to the shortest Hamiltonian path, which were stated without proof

in section 2.

Let for some p . Rn, H° and TP be optimal solutions of the SHPP and the

SSTP in GP = (V,E,CP). As before, t+(e,TP), t-(e,TP), e e E, are edge
p p

tolerances with respect to To and c+(e), c-(e), e s E, are edge tolerances

with respect to H0 .

Theorem 2. If A(p) : 0 and H0 : Tp , then for e a E

c+(e) Z t (e,H0) + min {t (u,HO) : u H0 \e}
p p

and

c-(e) a tp(e,H0 ) + min{tp(u,H0 ) : u 6 E\H 0 \{e}}
p p
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Proof. If c+(e) < -, then according to (I) we have c+(e) = IP(He) - iP(H°),

where He= arg min {P(H) : H r He}. It is easy to see that IHo\Hel > 2.

Obviously, H0 , He 6 T and now because H0 is the shortest spanning tree in GP

and e H 0°\He, from (21) we have c+(e) = IP(He) - lP(H ° )

t+(e,H °) + t+(u,HO) for some u 6 H0\{e}. The proof of second part of
p p

theorem is analogous. 0

Theorem 3. If H0 f Tp , then for e s H°\T p

c+(e) min{t-(q,TP ) : q e E\TP\{e}} - A(p) (22)
p

and for e 'TP\H

c-(e) e minft+(r,TP ) : r s TP\(e}} - A(p) (23)
p

Proof. We will prove only (22), because a proof of (23) is analogous.

Consider e s H0 \Tp . If c+(e) < m, then c+(e) = l(He) - 1(H0 ) and there

exists a spanning tree T e which is the second shortest spanning tree not
2

containing e. Moreover, I(Te) 5 l(He) and c+(e) l(Te) - l(Tp )

+ (l(Tp ) - 0(H°)) = l(Te) - l(Tp ) - A(p). But Te\TP must contain some

1(2) 2

edge q s E\TP\{e}. Now from (21) we have l(Te) - I(Tp ) t-(q) which

implies (22). U

Bounds for edge tolerances provided by Theorem 3 (and L, iwud 1 ) may be

weak. In particular cases, values of right-hand sides of inequalities (22),

(23) and (4), (5) may even be negative, which means that trivial bounds are

obtained. Thus, although any penalty vector may be used to calculate c+(e),

N .8GG#
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c-(e), it is desired to have a vector p which gives small (if possible - equal

to zero) values of A(p) and IH°\TPI. This problem is discussed in the next

section.

4. Computing of penalties

To calculate lower bounds of edge tolerances with respect to H0 , a

penalty vector p is needed, for which A(p) and IH°\TpI are as small as

possible. If the duality gap A is equal to zero, then such vector may be

found as a solution of equation A(p) = 0 and this guarantees also that

IHO\TPI = 0. Otherwise, one may try to solve this bicriteria problem by

choosing as a vector p such a feasible solution of equation A(p) = A, for

which IH°\TPI is minimal.

To solve A(p) = 0 two attempts may be considered:

(i) The problem min{A(p) : p r R) may be solved exploiting

properties of the function A(p) (A(p) is convex, piece-wise

linear function on Rn) by some subgradient type procedure.

(ii) A feasible solution of A(p) = 0 (if exists) may be calculated by

finding a solution of the system of linear inequalities (24).

The later approach was used in computer implementation and it will be

described in this section.
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Define for a given graph G = (V,E,C), P(C) : {p . Rn:

p(i) + p(j) - p(k) - p(k+1) > c(k,k+1) - c(i,j)

for (i,j) * E, i = 1,...,n-2

j = i+2,...,n (24)

k i, ...j-1}

Theorem 4. Let H° = f(1,2), (2,3),...,(n-1,n)} be an optimal solution of tne

SHPP in GP = (V,E,CP). Then A(p) = 0 if and only if p 6 P(C).

Proof. A(p) = 0 if and only if H° is also an optimal solution of the SSTP

in GP , i.e., if necessary and sufficient optimality conditions formulated in

Proposition 3 are satisfied. This means that for H° inequalities (14) must

hold for the graph GP . But for the spanning tree HO the sets U(e), W(e) are

given by (18) and (19), and now it is easy to check, that if the inequalities

(14) are formulated for H0 and the graph GP , then we obtain a system of

conditions defining P(C). 0

The number S(G) of inequalities defining P(C) is of order 0(mn). If

G = Kn (complete graph with n vertices), then

S(Kn ) n - (2k-1) [k(2k+l)-3] if n - 2k, k=1,2,...

and

2

S(Kn ) : k[(k+l)(2k+1)-3] if n : 2k+1, k=1,2,...
n,
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Any vector p belonging to P(C) may be used as a penalty vector to compute

lower bounds of edge tolerances with respect to HO, although different vectors

lead, in general, to different values of these bounds. If P(C) :, then it

means that there is a positive duality gap A.

As a simple consequence of Theorem 4 we obtain the following fact:

Corollary 1. If for a given graph G there is zero duality gap A, then the

optimality of arbitrary Hamiltonian path may be verified in a polynominal

time.

Proof. It is an immediate consequence of the fact that P(C) is defined by

polynominal number of inequalities and its consistency may be checked in a

polynominal time by linear programming. 0

Similar facts (which we will give without proof) hold for the SHTP.

Define for G = (V,E,C), P(C) = (p . Rn:

p(k) - p(2) > c(1,2) - c(1,k) for k=3,...,n-1, (1,k) a E,

p(k) - p(n) > c(1,n) - c(1,k) for k=3,...,n-1, (k,n) s E,

p(i) + p(j) - p(k) - p(k+1) > c(k,k+1) - c(i,j)

for (i,j) s E, i=2,...,n-2,

j : i+2,...,n, ki,...,J-1}
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Theorem 5. Let o : [(1,2), (2,3),...,(n-1,n), (n,1)1 be the shortest

Hamiltonian tour in GP  (V,E,CP). For Ro to be the shortest 1-tree in GP it

is necessary and sufficient that p s P(C).

5. Implementation of the method and conclusions

The method of calculating lower bounds of edge tolerances for the SHPP

and the SHTP described in previous sections was implemented for IBM PC in

Turbo Pascal 3.0. In the step of computing of edge tolerances for spanning

trees and 1-trees simple O(n2 ) labeling procedures mentioned in section 3 are

used. To calculate appropriate penalties an approach provided by Theorems 4

and 5 is used. Penalities are computed by solving linear programming problems

Tmin{a p: p P(C)}

minfa Tp: p G P(C)} (25)

Different objective vectors a a Rn  may be chosen and, usually, different

penalties as well as different lower bounds for edge tolerances are

obtained. In computational experiments a = (1 ,..,,)T or a = (0,..., 0 )T was

mainly used. In the later case by solving (25) an existence of feasible

solution of equation A(p) = 0 is checked.

To solve (25) a simple specialized version of the revised simplex

algorithm was implemented. As problem (25) has only n variables and large

number of constraints (for example, for the SHPP in Kn, n = 40, the number of

constraints exceeds 10000), the dual problem for (25) is solved and column
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M

generation technique is used. The computational experience is limited to

rather small sizes of problems. In Table 1 computation times in seconds for
I

IBM PC/XT with math-processor are reported. These times do not include input

and output of data. All test problems were randomly generated as planar

Euclidean SHTP.

In Table I n denotes the number of vertices, 6 is a density of graph,

p  
,P T P are respectively - average, minimal and maximal times of

a rain max
t

computing penalties (for 5 problems), T is a time of computing edge

tolerances.

TABLE 1

n T TTt
a min max

10 1 2.6 0.5 4.3 0.1
10 0.3 1.2 0.3 1.8 0.1

25 1 121.6 58.8 177.5 0.7
25 0.3 48.9 40.6 49.8 0.7

40 1 1572 877 2523 1.9
40 0.3 421 316 747 1.9

An approach described in section 2 may be used with different relaxations

of original problem.

Let (P): minff(x) x a X1 denote the original (primal) programming

problem and let x° be its optimal solution. Denote by (Rq) a relaxation of

(P) parameterized by some element q belonging to a specified set Q:

(Rq) v(q) : min{f (x) x X q.

qV
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(For example, in the approach described in this paper a role of parameter q is

played by the penalty vector p and Q = Rn).
•I

As a dual problem for (P) the following problem may be considered:

(D) q* = arg max v(q)
qraQ

The relaxation (Rq*) seems to be a good candidate to provide a
1

sensitivity analysis for x° by similar approach as used in this paper. In

order to apply this approach one must be able to answer the following two

auxiliary questions:

(i) How to perform a sensitivity analysis for the problem (Rq*)? N.

(ii) How to find in an efficient way q*, if x° is given, i.e., how to

solve the dual problem when the solution of primal is known?

In some cases an answer for the later question is obtained as an inexpensive

by-product of solving the original problem. This may be an important argument

for the choice of relaxation, because as numerical results reported in Table 1

show, in this approach almost all computing time may be spent on solving

problem (ii).
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